
 on August 3, 2017http://rspb.royalsocietypublishing.org/Downloaded from 
rspb.royalsocietypublishing.org
Research
Cite this article: Nawrot R, Albano PG,

Chattopadhyay D, Zuschin M. 2017 Climate

change and body size shift in Mediterranean

bivalve assemblages: unexpected role of

biological invasions. Proc. R. Soc. B 284:

20170357.

http://dx.doi.org/10.1098/rspb.2017.0357
Received: 20 February 2017

Accepted: 23 June 2017
Subject Category:
Global change and conservation

Subject Areas:
ecology

Keywords:
alien species, body size, Lessepsian invasion,

marine bivalves, tropicalization
Author for correspondence:
Rafał Nawrot

e-mail: rnawrot@flmnh.ufl.edu
Electronic supplementary material is available

online at https://dx.doi.org/10.6084/m9.

figshare.c.3825505.v3.
& 2017 The Author(s) Published by the Royal Society. All rights reserved.
Climate change and body size shift in
Mediterranean bivalve assemblages:
unexpected role of biological invasions

Rafał Nawrot1,2, Paolo G. Albano1, Devapriya Chattopadhyay3

and Martin Zuschin1

1Department of Palaeontology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
2Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
3Department of Earth Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur
WB-741246, India

RN, 0000-0002-5774-7311; PGA, 0000-0001-9876-1024; DC, 0000-0002-9102-9313;
MZ, 0000-0002-5235-0198

Body size is a synthetic functional trait determining many key ecosystem

properties. Reduction in average body size has been suggested as one of

the universal responses to global warming in aquatic ecosystems. Climate

change, however, coincides with human-enhanced dispersal of alien species

and can facilitate their establishment. We address effects of species introduc-

tions on the size structure of recipient communities using data on Red Sea

bivalves entering the Mediterranean Sea through the Suez Canal. We

show that the invasion leads to increase in median body size of the Mediter-

ranean assemblage. Alien species are significantly larger than native

Mediterranean bivalves, even though they represent a random subset of

the Red Sea species with respect to body size. The observed patterns

result primarily from the differences in the taxonomic composition and

body-size distributions of the source and recipient species pools. In contrast

to the expectations based on the general temperature–size relationships in

marine ectotherms, continued warming of the Mediterranean Sea indirectly

leads to an increase in the proportion of large-bodied species in bivalve

assemblages by accelerating the entry and spread of tropical aliens. These

results underscore complex interactions between changing climate and

species invasions in driving functional shifts in marine ecosystems.
1. Introduction
Body size is a key biological feature, closely related to a multitude of

physiological, life-history and ecological traits of organisms, many of which

determine community structure and functioning of ecosystems [1–3].

Reduction in average body size has been suggested to be a universal response

of ectothermic organisms to climate warming, especially in aquatic systems

[4–6]. This phenomenon can be observed across levels of biological hierar-

chy—from individuals to communities—reflecting cumulative and interactive

effects of changes in growth and development rates of individuals, and shifts

in population size structure and community composition [4,6].

Climate-induced shifts in species geographical ranges can be one of the key

factors changing the distribution of body sizes at multiple spatial scales.

According to Bergmann’s rule (sensu [7]), within a broadly distributed taxo-

nomic clade, species of smaller size tend to inhabit lower latitudes. Because

climate warming triggers poleward range shifts, the proportion of smaller-

bodied species is thus expected to increase, leading to a decrease in average

body size in marine assemblages [4,8]. Human activities, however, including

shipping, aquaculture and construction of canals, have greatly altered pathways

and rates of species dispersal on a global scale [9,10], causing massive introduc-

tion of alien species originating from distant biogeographic regions. Moreover,
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climate change can facilitate this process. Warming removes

physiological constraints on survival, growth and successful

reproduction of subtropical and tropical alien species, and

increases their competitive abilities relative to native biota

[11–13]. Because species invasions can be non-random with

respect to body size [14–16], a growing share of alien species

may thus amplify or reverse climate-induced shifts in the size

structure of receiving communities, depending on the direc-

tion and magnitude of the relative difference in body size

between native and introduced species.

Large-bodied species may possess life-history traits facil-

itating dispersal and population establishment [5,14,17],

and can be overrepresented among alien species because

they were intentionally selected and introduced by humans

[16,18]. Correlation between body size and invasion success,

however, is not the only way in which differences in body

size between alien and native species can arise. The addition

of alien species can shift the interspecific size distribution of

the recipient region in three general, not mutually exclusive

ways (figure 1): (i) introduction of species from a region

characterized by a different size-frequency distribution

(species pool effect; cf. [19]); (ii) preferential introduction,

establishment and/or spread of aliens belonging to particular

size classes and thus representing a non-random sample of

their source species pool (size-biased invasion; e.g. [14,16]);

and (iii) change in average body size of alien species follow-

ing their establishment in the new area relative to their native

range (post-invasion size shift; e.g. [20]). Evaluating the rela-

tive importance of these scenarios requires information on

both the source and recipient species pool of aliens, as well

as comparative data on body size of alien species from their

native and invaded range.

The Mediterranean Sea is a unique location where the

ongoing warming trend coincides with an influx of alien species

on an unprecedented scale [12,21,22]. The majority of the new-

comers are subtropical and tropical Indo-Pacific species

entering through the Suez Canal [22], the process commonly

known as Lessepsian or Erythrean invasion [23]. Increasing

sea surface temperatures facilitate establishment and further

range expansion of warm-water alien species [23–25], leading

to the so-called ‘tropicalization’ of Mediterranean biota [26].

Red Sea species are already becoming dominant in coastal eco-

systems of the southeast Mediterranean Sea [27,28], and are

increasingly spreading throughout the rest of the basin

[22,29]. Importantly, because the source and recipient species

pool, introduction pathway and relative success of aliens are

known, the Lessepsian invasion represents a perfect system to

study processes operating during marine invasions [30].

Here we evaluate the effects of the Lessepsian invasion on

regional body size patterns in the Mediterranean Sea to test if

the introduction of tropical alien species affects the reduction

of body size in native communities expected under climate

warming. We use data on marine bivalves, which are one

of the most important groups taking part in the Lessepsian

invasion [31]. First, we combine information on the inter-

specific size distribution of the entire Red Sea and

Mediterranean species pools, and assess non-random size

patterns among alien species to disentangle the importance

of size-selective invasion and source-pool effect. Because

body size is a phylogenetically conservative trait [32], we

test for the taxonomic bias in the invasion and evaluate the

consistency of the observed patterns within individual

families and functional groups. We focus on the first stage
of the Lessepsian invasion—the arrival of alien species to

the Mediterranean Sea, corresponding to transport and intro-

duction stages of Blackburn et al. [33]—because the selectivity

during this phase constrains the characteristics of species

potentially able to establish and become invasive in the

new region [15]. Second, we use size estimates from multiple

populations of two widespread invasive species to test if

Lessepsian bivalves are becoming larger in the Mediterranean

Sea compared with their native range.
2. Material and methods
(a) Dataset compilation
We collected species-level data on body size and ecological

characteristic of bivalve fauna living at shelf depths (less than

200 m) in the Red Sea and in the Mediterranean Sea ([31];

electronic supplementary material, dataset S1). We combined

information from primary literature, major monographs

(e.g. [34–38]), our own field studies and museum collections

(see electronic supplementary material, dataset S1 for the full list

of sources). Our dataset encompassed 709 bivalve species from

66 families: 405 Red Sea species and 306 Mediterranean species,

including two indigenous species shared by both basins. Special-

ized wood-boring teredinid and xylophagid bivalves were

excluded (18 species in total); the former include many crypto-

genic species and both groups are poorly studied in the Red Sea.

We use the term ‘Lessepsian’ to denote all Red Sea species,

which have penetrated through the Suez Canal irrespective of

their mode of introduction; some species are entering and spreading

in the Mediterranean Sea both through the natural and human-

mediated dispersal [23]. The list of Lessepsian bivalves was based

on Zenetos et al. [39,40] and updated with more recent records (elec-

tronic supplementary material, dataset S1). Given a common

uncertainty associated with the assessment of the establishment

status of marine invertebrates, all Red Sea species with confirmed

records in the Mediterranean Sea were included in the analyses.

As a proxy for body size of each species, we used the size of

the largest specimen reported from its native range calculated as

the log2-transformed geometric mean of the shell length and

height (the metric commonly used in macroecological studies

on marine bivalves; e.g. [41,42]). In all analyses addressing the

interspecific size patterns, the maximum size observed in the

Red Sea was used for all Red Sea species, including aliens,

while the measurements recorded from the Mediterranean Sea

were used for native Mediterranean species. Species were

assigned to functional groups based on combination of the

relationship with a substrate and feeding mode [31]. Because

most of the functional groups contain no or only a few alien

species [31], we addressed the patterns in body size only

among epifaunal suspension feeders and infaunal suspension

feeders. These two most diverse groups encompass together

80% of alien species (44 out of 55) and the majority of Red Sea

and Mediterranean species (57.8% and 63.1%, respectively).

(b) Statistical analyses
Because body-size distributions tend to be skewed even after

log-transformation, we used median values and employed per-

mutation tests to compare the size of the Lessepsian species

with that of native Mediterranean bivalves. After pooling size

data for alien and native species, and randomly reassigning

each species to one of these categories, we calculated the differ-

ence in median size between them. By repeating this

procedure 10 000 times, we generated a resampling distribution

of such differences, which was used to evaluate the significance

of the observed size difference. Similar procedures were used to

http://rspb.royalsocietypublishing.org/


(b)

size

(a)

so
ur

ce
re

ci
pi

en
t

size

so
ur

ce
re

ci
pi

en
t

(c)

size

so
ur

ce
re

ci
pi

en
t

Figure 1. Three possible ways in which the addition of alien species (marked in red) can affect interspecific size distribution in a recipient region. (a) Species pool
effect: alien species are a random subset of their source pool with respect to body size, but they originate from a region characterized by a larger average size.
(b) Size-biased invasion: large-bodied species are more successful invaders; this correlation can occur at any stage of the invasion process. (c) Post-invasion size shift:
successful alien species are a random subset of their source pool with respect to body size, but tend to reach larger size in the introduced range. Body size is in
arbitrary units. Arrows link individual alien species between the source and recipient region; only a few of them are shown for clarity. The average size (thick vertical
lines) and shape of the size distribution in a recipient region after the invasion is shown in red.
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compare body size in the Mediterranean and Red Sea species

pools. We report the median values on arithmetic scale (i.e. as

geometric mean of shell dimensions) to facilitate interpretation.

To evaluate the non-random patterns in alien species intro-

ductions we followed the approach of Blackburn & Cassey

[15]. To determine whether the 55 species that crossed the Suez

Canal represent a non-random subset of the Red Sea fauna

with respect to body size, we generated 10 000 random samples

of 55 species taken without replacement from the total pool

of 405 Red Sea species. We calculated median body size for

each of these random draws to obtain a null distribution and

corresponding 95% confidence intervals (CI), against which

the observed median size of alien species was compared.

Larger than expected body size of alien species can result from

an over-representation of large-bodied clades among successful

invaders. We repeated, therefore, the resampling algorithm

as describe above, while controlling for family membership of

alien species [15]. At each iteration, the body size of each alien

was replaced by that of a Red Sea species selected at random

from the same family, thus constraining the family-level

composition of a simulated alien species list.

To test for the taxonomic clustering of the invasion success,

we used Moran’s I statistic to check for correlation between

family membership and alien status coded as a binary trait

(see [43,44]). This weighted correlation coefficient was intro-

duced as a measure of spatial autocorrelation [45], but has

been subsequently extended to tests of phylogenetic and taxo-

nomic autocorrelation [46], including taxonomic patterns in

extinction risk [43] and introduction success [44]. We calculated

Moran’s I using the R package ape [47] with weights denoting

taxonomic proximity between two species set to 1 for co-familiar

species and 0 otherwise. For individual families, we compared

the observed number of alien species in each family with the

null expectation assuming no taxonomic bias [15]. From the

source pool of 405 Red Sea species, we sampled at random and

without replacement 55 species. The number of alien species

expected to belong to a given family, was calculated as the

mean number of species drawn from that family in 10 000 such

simulations together with corresponding 95% CI. We focused

on families, because this taxonomic level explained most of the

variation in body size in our dataset (electronic supplementary

material, table S1), as indicated by hierarchically nested

ANOVA [48].
(c) Testing for the post-invasion size shift
Because of the paucity of population-level size data for the

majority of Lessepsian bivalves we focused on two extensively
studied species—Brachidontes pharaonis (Fisher, 1870) and

Pinctada imbricata radiata (Leach, 1814)—for which we could

obtain size measurements from multiple sites across their

native (Red Sea and northwest Indian Ocean) and invaded

range (Mediterranean Sea and Suez Canal; electronic supplemen-

tary material, figure S1). These two invasive aliens were among

the first to cross the Suez Canal and are widely distributed in

the Mediterranean Sea [23]. We combined available published

records, museum collections and our unpublished data (elec-

tronic supplementary material, dataset S2), limiting the dataset

to samples representing at least 20 measured individuals. If a

single site was sampled during multiple seasons, individual

collections were combined. We recorded the maximum size—

measured as the largest shell dimension—in each sampled

population and compared the mean maximum size across popu-

lations in the native and invaded range [20]. The mean shell size

for individual samples was not always reported in the original

studies, but when available, it was closely correlated with the

size of the largest individual (Pearson’s r ¼ 0.79, p , 0.001 for

25 populations of P. imbricata radiata). All statistical analyses

were performed in R [49].
3. Results
Fifty-five species of bivalves from 25 families—13.6% of the

Red Sea species pool—crossed the Suez Canal, increasing

the regional species richness of the Mediterranean Sea by

18% (from 306 to 361 species). These immigrants are signifi-

cantly larger than native species (permutation test, p ,

0.001; figure 2), with median body size of aliens (37.2 mm)

being almost two times greater than that of native bivalves

(19.8 mm). Thus, the addition of the Lessepsian species

increases the median body size in the Mediterranean Sea by

8.6% (from 19.8 to 21.5 mm; electronic supplementary

material, figure S2a). The observed median size of aliens is

not significantly different, however, from that expected

for a random selection of 55 Red Sea species (28.8 mm;

95% CI: 20.6–39.2; figure 2), especially when accounting for

family membership (34.8 mm; 95% CI: 28.6–41.8). This lack

of strong size-selectivity of the invasion process suggests

that the larger size of alien bivalves results primarily from

the differences between the source and recipient species

pool. Indeed, the Red Sea bivalve fauna is characterized

by a distinct size-frequency distribution (Kolmogorov–

Smirnov test, p , 0.001) and larger median size (28.7 mm)
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compared with that of the Mediterranean (permutation test,

p , 0.001; figure 2).

When the two most species-rich functional groups are

considered separately (electronic supplementary material,

figure S3), aliens are significantly larger than native Mediter-

ranean species among epifaunal suspension feeders (median

size of 45.6 mm and 19.7 mm, respectively; permutation test,

p ¼ 0.006), but not among infaunal suspension feeders

(37.2 mm and 30.1 mm, respectively, p ¼ 0.29). Therefore,

the invasion-driven size shift in the novel Mediterranean

assemblage is much stronger for the former group (increase

in median size by 18.2%, from 19.7 to 23.3 mm; electronic

supplementary material, figure S2). In neither of the two

functional groups is the median size of aliens significantly

different from that expected by a random sampling from

the pool of Red Sea species representing a given ecology

(electronic supplementary material, figure S3). Thus, just

like in the total bivalve fauna, the magnitude of size differ-

ences between alien and native species is largely controlled

by the regional size patterns: epifaunal species in the Red

Sea are significantly larger than in the Mediterranean

(41.9 mm versus 19.7 mm; permutation test, p , 0.001), but

infaunal species have similar median size in both regions

(30.4 mm versus 30.1 mm, p ¼ 0.93).

Because particular clades tend to differ in the average size

of constituent species, pooling them together in the analyses

of the total assemblage may mask non-random invasion pat-

terns occurring within individual lineages. However,

comparison of alien species with Red Sea species that
belong to the same family, but did not cross the Suez

Canal, failed to show any consistent size-selectivity within

families (figure 3a; permutation test for difference in

median size, p . 0.05 for all families). When alien species

are compared with co-familiar Mediterranean species, similar

lack of unidirectional differences in median size between

alien and natives can be observed (figure 3b; permutation

test, p . 0.05 for all families).

Variation in the species richness of families is the primary

reason for distinct shapes of the Mediterranean and Red Sea

body-size distributions. Due to high heritability of body size,

particular bivalve clades tend to occupy different portions of

a size distribution [32]. There is a lack of consistent differ-

ences in median species size between the two regions

within individual families (figure 3c). Indeed, only three

families (Arcidae, Carditidae and Chamidae) are significantly

larger in the Red Sea and two (Donacidae and Glycymeridi-

dae) are significantly larger in the Mediterranean Sea

(permutation test, p , 0.05). However, families grouping

species with larger than average body size tend to be much

more diverse in the Red Sea (figure 3d ). Moreover, these

species-rich and large-bodied families contain the majority

of Lessepsian species (figure 3d ), which explains the striking

difference in body size between alien and native species

evident when families are pooled together (figure 2).

Taxonomic selectivity of the invasion is weak; across all

families, there is no correlation between species’ taxonomic

affinity and their alien status (Moran’s I ¼ 0.03, p ¼ 0.29).

Only Ostreidae (true oysters) are represented by significantly

more alien species than would be expected to cross the Canal

if no taxonomic bias occurred (5 species observed versus 1

species expected; 95% CI: 0–3 species).

The average maximum shell size within alien populations

of B. pharaonis (mean+ s.e.: 30.5+3.0 mm, n ¼ 24) is signifi-

cantly larger than those from its native range (21.4+0.9 mm,

n ¼ 9; Welch’s t-test, t¼ 22.88, d.f. ¼ 9.52, p ¼ 0.02; electronic

supplementary material, figure S4a). No significant difference

in size, however, occurs between the invaded (75.3+
3.3 mm, n ¼ 33) and native range of P. imbricata radiata
(73.7+5.8 mm, n ¼ 14; t ¼ 20.24, d.f. ¼ 21, p ¼ 0.81; elec-

tronic supplementary material, figure S4b). Although the

number of measured individuals varies greatly between

samples (20–5000 shells), it is not correlated with the

recorded maximum size for either species (n ¼ 33, Pearson’s

r ¼ 0.28, p ¼ 0.12 for B. pharaonis; n ¼ 47, r ¼ 0.18, p ¼ 0.22

for P. imbricata radiata).
4. Discussion
(a) Consequences of the invasion
Changes in species composition due to poleward range shifts

in response to climate warming are expected to decrease aver-

age body size of marine assemblages [4,8]. The Lessepsian

invasion essentially represents an expansion of subtropical

and tropical species into mid-latitudes, but its outcome is

directly opposite to this simple prediction: Red Sea species

crossing the Suez Canal are significantly larger than native

Mediterranean bivalves, thus shifting the body size distri-

bution of the recipient biota toward larger size classes.

Moreover, the ongoing rise of seawater temperatures facili-

tates the establishment and further spread of Lessepsian

species [23–25], and thus indirectly leads to the increase in
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the proportion of large-bodied species in the Mediterranean

bivalve fauna.

The magnitude of the assemblage-level size increase

documented here at the scale of the whole Mediterranean

Sea should be viewed as a very conservative estimate. Far

more dramatic changes are likely to be taking place in its

south-eastern part, the Levantine Sea, due to its proximity

to both the Suez Canal and a restricted pool of native species

[22,27,29]. The progressive spread of alien species along the

southeast Mediterranean coasts coincides with population

collapses and range contraction of native species [27,28,50].

In epifaunal assemblages inhabiting intertidal and shallow

subtidal rocky habitats, Lessepsian species have already

almost completely replaced native species [28,50,51]. Because

the size difference between alien and native species is much

stronger among epifaunal suspension feeders compared

with the rest of the bivalve fauna, this turnover in species

composition is causing a pronounced shift in the size
structure of hard-substrate communities. Given the important

role that suspension-feeding bivalves play in benthic–pelagic

coupling and nutrient cycling in coastal ecosystems [52,53],

ecosystem functioning in these habitats may also be affected.

Growing dominance of large-bodied alien species should

lead to slower turnover rates and higher standing biomass

among primary consumers, reducing rates of energy and

matter fluxes.
(b) Mechanism of the size shift
In contrast to the predictions of the size-biased invasion

model (figure 1b), the median size of aliens is indistinguish-

able from that of a random sample of the Red Sea species,

suggesting that their arrival to the Mediterranean Sea is inde-

pendent of species body size. The lack of consistent size

differences between alien and native species within individ-

ual families indicates that the difference observed in the

http://rspb.royalsocietypublishing.org/
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total assemblage arises mostly as a consequence of family-

level composition of alien species. In other words, alien

species are not necessarily larger than co-familial native

species, but they tend to belong to large-bodied lineages.

These clades are also more diverse in the Red Sea and only

a weak taxonomic bias can be detected in the invasion pro-

cess. Together with the lack of strong size-selectivity, this

points to the distinct taxonomic composition and shapes of

body-size distributions of the Red Sea and Mediterranean

species pools (i.e. source-pool effect, figure 1a) as the primary

driver of the observed patterns.

These regional differences cannot be explained by

sampling biases alone; although small-bodied and cryptic

species may be undersampled in the Red Sea and among

alien species, exclusion of such problematic groups has little

effect on the results (electronic supplementary material,

figure S5). The observed patterns in body size are also unli-

kely to be a simple expression of current environmental

conditions. Interspecific latitudinal trends in body size are

common within bivalve families, but they vary considerably

in strength and direction across lineages and geographical

regions, and along environmental gradients [42]. Our results

suggest that the distinct shapes of body-size distributions in

the Red Sea and Mediterranean arise as a consequence of the

differences in relative diversity of families, which group species

from different parts of the size spectrum (figure 3c,d). Such

large-scale patterns in species richness and body size are ulti-

mately shaped by region- and clade-specific histories of

origination, extinction and immigration dynamics [41,54,55].

Although we did not find support for the correlation

between body size and successful arrival of alien species

into the Mediterranean Sea, such a relationship can still

occur during the later stages of the invasion. Traits associated

with large body size, like higher fecundity, competitive abil-

ities or predator avoidance [14,17], may be more important

during subsequent establishment and spread of alien species,

especially if interactions with incumbent species limit popu-

lation expansion and growth [30]. Indeed, large body size

separates invasive species (i.e. those that are widespread

and have a strong impact on native communities) from the

rest of established Lessepsian bivalves [31].

Increase in size following the establishment in a new

region (post-invasion size shift; figure 1c) is another mechanism

potentially affecting size structure of recipient communities.

Larger size in the invaded range compared with the native

one has been demonstrated for a number of marine and estuar-

ine invertebrate species [20,56,57], although the evidence

from terrestrial organisms is more equivocal [58]. Apart from

differences in latitude and abiotic conditions [20], poten-

tial mechanisms responsible for this pattern include founder

effects, propagule bias, release from coevolved parasites, pre-

dators and competitors, and rapid life-history evolution in

range-expanding populations (reviewed in [59,60]).

A paucity of comparative data from the native range of alien

species severely limits our ability to evaluate the importance of

post-invasion size shifts among Lessepsian bivalves—a pro-

blem often faced by invasion biologists [58]. We could

identify only two species for which data from multiple native

populations are available: B. pharaonis attained larger shell

size in the Suez Canal and Mediterranean Sea relative to its

native range, but no significant differences could be detected

for P. imbricata radiata. Although based on more spatially

restricted sampling, larger body size in alien populations has
been previously shown for the Lessepsian bivalve Spondylus spi-
nosus [61] and the solitary ascidian Herdmania momus [62]. The

maximum globally observed size of several Indo-Pacific fish

species was recorded from their alien populations in the Levan-

tine Sea [63]. Further research is necessary to test the generality

of these observations, but they suggest that at least some Lessep-

sian species can exhibit larger sizes in the Mediterranean Sea

relative to their source populations.
5. Conclusions
As human-mediated dispersal of species redefines modern

biographic patterns [10], our ability to use simple ecogeo-

graphic rules to develop broadly applicable predictions on

the structure of the novel ecosystems may be severely limited.

Due to strong human preference towards introduction of

large-bodied species, alien species have already become a

major driver of body-size changes in freshwater fish assem-

blages on a global scale [16]. We show that even in the

absence of such strong, directional selection, biological inva-

sions can result in significant alteration of the distribution of

body sizes in recipient communities. Our results demonstrate

the importance of the source-pool effect, and thus suggest

that the biogeographic origin of alien species can determine

the direction and magnitude of functional shifts in strongly

invaded ecosystems. More importantly, the complex inter-

actions between climate change and species invasions can

result in unexpected outcomes, which are opposite to the pre-

dictions based on the general temperature–size relationships

in marine ectotherms: continued warming of the eastern

Mediterranean Sea will increase the average body size in

bivalve assemblages because it facilitates the replacement of

native species by larger-bodied thermophilic aliens.

It remains a major challenge to understand how these

regional patterns will translate into changes in size spectra

at the community scale, which in turn may affect food web

structure and ecosystem functioning [2,3]. Alteration of size

structure of recipient communities can result not only from

a simple numerical addition of alien species, but also

from their effects on diversity, abundance, population size

structure and growth rates of native species [25,64,65]. As

rates of spread of aliens are much higher compared with

range-shifting native species [66], changes resulting from

invasions may progress more rapidly than the expected

responses of native communities to global warming. There-

fore, the predictions on the future shifts in community size

structure and related ecosystem properties need to take

into account the context-dependent nature of the invasion

process and its multiple interactions with other types of

anthropogenic impacts.
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discussions. We are grateful to D. Bottaro, F. De Santis, A. Kittle,
P. Maestrati, A. Marini, C. Mifsud, R. Moussa, W. Renda, B. Sabelli,
A. Salvador, M. Stachowitsch and E. E. Strong for sharing their
material, publications and size data from the collections in their care.
yalsocietypu
References
blishing.org
Proc.R.Soc.B

284:20170357
1. Peters RH. 1983 The ecological implications of body-
size. Cambridge, UK: Cambridge University Press.

2. Woodward G, Ebenman B, Emmerson M, Montoya
JM, Olesen JM, Valido A, Warren PH. 2005 Body size
in ecological networks. Trends Ecol. Evol. 20,
402 – 409. (doi:10.1016/j.tree.2005.04.005)

3. Yvon-Durocher G, Allen AP. 2012 Linking
community size structure and ecosystem functioning
using metabolic theory. Phil. Trans. R. Soc. B 367,
2998 – 3007. (doi:10.1098/rstb.2012.0246)

4. Daufresne M, Lengfellner K, Sommer U. 2009 Global
warming benefits the small in aquatic ecosystems.
Proc. Natl Acad. Sci. USA 106, 12 788 – 12 793.
(doi:10.1073/pnas.0902080106)
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